Rheology of Branched Wormlike Micelles
نویسندگان
چکیده
The topology of self-assembled surfactant solutions includes varying degrees of micellar branching, ranging from linear wormlike micelles to a micellar network. Micellar branching acts as an effective attraction between micelles such that network condensation can lead to phase separation. Unlike chemical branching in polymers, micellar branches are labile. Movement of branches along a micelle contour has therefore been proposed as a mechanism of stress relaxation that leads to a reduction in the structural relaxation time and thus, the zero-shear viscosity. Branching is also thought to suppress flow alignment, and for lower levels of branching, may also suppress instabilities such as shear banding. The suppression of shear banding can lead to a lesser degree of shear-thinning in the apparent viscosity at higher shear rates, as well as a reduction in extensional thickening. However, for higher levels of branching, shear can induce branching for samples in proximity to such a phase transition, which can result in shear banding due to shearinduced phase separation. Recent modeling and simulations of the energetics of branching, as well as experiments on model systems, show the reduction in zero-shear viscosity is due to micelle branching. Current research includes efforts to develop a more mechanistic, quantitative understanding of micellar branching and more generally, its effects on micellar solution rheology.
منابع مشابه
Strong Flows of Viscoelastic Wormlike Micelle Solutions
The unique rheological properties of viscoelastic wormlike micelle solutions have led to their broad use as rheological modifiers in consumer products such as paints, detergents, pharmaceuticals, lubricants and emulsifiers. In addition, micelle solutions have also become increasingly important in a wide range of industrial and commercial applications including agrochemical spraying, inkjet prin...
متن کاملThe Formation of pH-Sensitive Wormlike Micelles in Ionic Liquids Driven by the Binding Ability of Anthranilic Acid
Wormlike micelles are typically formed by mixing cationic and anionic surfactants because of attractive interactions in oppositely charged head-groups. The structural transitions of wormlike micelles triggered by pH in ionic liquids composed of N-alkyl-N-methylpyrrolidinium bromide-based ILs (ionic liquids) and anthranilic acid were investigated. These structures were found responsible for the ...
متن کاملMicrostructures and rheological dynamics of viscoelastic solutions in a catanionic surfactant system.
Viscoelastic solutions formed in a catanionic surfactant system of dodecyltriethylammonium bromide (DTEAB)/sodium dodecylsulfate (SDS) at the molar ratio of 27/73 were systematically studied using a combination of rheology and dynamic light scattering (DLS). Wormlike micelles began to form above the total surfactant concentration (C(total)) of 120 mM by the growth of small cylindrical micelles....
متن کاملMicrostructure and Dynamics of Wormlike Micellar Solutions Formed by Mixing Cationic and Anionic Surfactants
Small-angle neutron scattering (SANS) and rheology are used to probe the wormlike micelles formed in mixtures of a cationic (cetyl trimethylammonium tosylate, CTAT) and an anionic surfactant (sodium dodecyl benzene sulfonate, SDBS). For a fixed composition of 97/3 CTAT/SDBS, the zero-shear viscosity η0 initially increases rapidly with surfactant concentration, but decreases beyond an intermedia...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014